当前位置 :
【04考研数学定积分问题04考研有这样一道题:已知f'(x)=xe^(-x)且f(1)=0则f(x)=?答案是这样写的:令t=e^x,所以f'(t)=lnt/t所以f(t)=f(1)+∫(下限1上限t)f'(s)ds)=∫(下限1上限t)lns/sds=1/2(lnt)^2.为什么上式】
更新时间: 2025-08-28 22:23:46
1人问答
问题描述:

04考研数学定积分问题

04考研有这样一道题:已知f'(x)=xe^(-x)且f(1)=0则f(x)=?

答案是这样写的:令t=e^x,所以f'(t)=lnt/t

所以f(t)=f(1)+∫(下限1上限t)f'(s)ds)=∫(下限1上限t)lns/sds=1/2(lnt)^2.

为什么上式要计算f(1)?

刘会雪回答:
  已知,f'(x)=xe-x,f(1)=0,那么根据常规的解题思路我们就会设ex=t,x=lnt那么f'(t)=lnt/t,那么我们很容易得出f(t)=∫1t(lnt/t)dt容易看出,∫t1lntd(lnt)=f(t)则可以得到f(t)=(lnt)2/2¦t1=(lnt)2/2--f(1)=(lnt)2/...
最新更新
优秀数学推荐
热门数学
保卡通(baokatong.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
Copyright©2009-2021 保卡通 baokatong.com 版权所有