当前位置 :
高一数学已知f(x)=2sin(x+π/3),在△ABC中,∠A,∠B,∠C的对边分别是a,b,c,且满足(2a-c)cosB=bcosC,已知f(x)=2sin(x+π/3),在△ABC中,∠A,∠B,∠C的对边分别是a,b,c,且满足(2a-c)cosB=bcosC,求f(A)的取值范围
更新时间: 2025-08-22 20:25:09
1人问答
问题描述:

高一数学已知f(x)=2sin(x+π/3),在△ABC中,∠A,∠B,∠C的对边分别是a,b,c,且满足(2a-c)cosB=bcosC,

已知f(x)=2sin(x+π/3),在△ABC中,∠A,∠B,∠C的对边分别是a,b,c,且满足(2a-c)cosB=bcosC,求f(A)的取值范围

陆佶人回答:
  全部换成sin得到2sinAcosB-sinCcosB=sinBcosC,2sinAcosB=sin(B+C)=sinA,则cosB=1/2,B=60°,A>0°且A0且
数学推荐
数学推荐
最新更新
优秀数学推荐
热门数学
保卡通(baokatong.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
Copyright©2009-2021 保卡通 baokatong.com 版权所有