当前位置 :
关于对弧长的曲线积分的一个公式的证明?在同济大学编写的高等数学第五版下册中,第128页有个公式△S(i)=[∫根号(ф'(t))^2+(φ'(t))^2]d(t)(积分上下限为t(i)和t(i-1),式中"'"表示求导数,"^2"表示
更新时间: 2025-08-18 05:22:48
1人问答
问题描述:

关于对弧长的曲线积分的一个公式的证明?

在同济大学编写的高等数学第五版下册中,第128页有个公式△S(i)=[∫根号(ф'(t))^2+(φ'(t))^2]d(t)(积分上下限为t(i)和t(i-1),式中"'"表示求导数,"^2"表示平方).怎么证明?

彭进业回答:
  事实上这种证明过程无需掌握.   曲线积分中的ds表示的是弧长元素,也就是弧微分,在上册定积分的应用一章中,利用定积分计算曲线弧长时,得到公式:ds=√[(dx)^2+(dy)^2],当曲线方程是直角坐标方程、参数方程、极坐标方程时,ds有不同的表达式,根据这些不同的表达式,确定出相应的积分上下限即可.   当曲线方程是参数x=ф(t)),y=φ(t)时,ds=√[(ф'(t))^2+(φ'(t))^2]dt
数学推荐
数学推荐
最新更新
优秀数学推荐
热门数学
保卡通(baokatong.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
Copyright©2009-2021 保卡通 baokatong.com 版权所有