卓里奇《数学分析》上的2个问题
1.试证对于平面上平移、旋转、位似变换(位似比小于1)的任意复合(不包括单纯的平移),总存在一个不动点.
2.该书对复合函数的定义中指出f:X→Y,g:Y→X,且g定义在f的值域(设为B)上,那么有Y包含于B,又显然有B包含于Y,那么有B=Y,这说明f必须是满射,换句话说如果X是一元集,Y是二元集,那么f与g不能复合.但是后面有一道习题却出现了f与g复合的情况,矛盾了!
我个人认为f必须是满射是荒谬的,张筑生的数学分析新讲上就说只需要f的值域(B)包含于g的定义域(Y),那么“g定义在f的值域”这句话是不是有问题(这两种说法显然是矛盾的),或者是我理解错了?