当前位置 :
已知f(2)=1/2,f’(2)=0及∫(0→2)f(x)dx=1,计算∫(0→1)x^2·f”(2x)dx
更新时间: 2025-08-22 21:12:30
1人问答
问题描述:

已知f(2)=1/2,f’(2)=0及∫(0→2)f(x)dx=1,计算∫(0→1)x^2·f”(2x)dx

付敬业回答:
  ∫(0→1)x^2·f”(2x)dx=(1/2)∫(0→1)x^2·df'(2x)=(1/2)[x^2f'(x)︱(0,1)-∫(0→1)2x·f'(2x)dx]=-(1/2)∫(0→1)x·df(2x)=-(1/2)[xf(x)︱(0,1)-∫(0→1)f(2x)dx]=-(1/2)[(1/2)-(1/2)∫(0→2)f(x)dx]=0...
最新更新
优秀数学推荐
保卡通(baokatong.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
Copyright©2009-2021 保卡通 baokatong.com 版权所有