用展开泰勒公式证明不等式
设f(x)在[0,1]上具有二阶导数,且满足f(x)的绝对值≤a,f''(x)的绝对值≤b,其中a>=0,b>=0.证明对于任意x∈(0,1),有f'(x)的绝对值≤2a+b/2