证明:
1º.n=1时,a1=4^(1/2)=2>(2*1+1)^(1/2)=3^(1/2);
2º假设n=k时,ak>(2k+1)^(1/2);
则n=(k+1)时,a(k+1)=ak+1/ak;
欲证结果,只需证(ak+1/ak)^2>(2k+3);
而(ak+1/ak)^2=(ak)^2+2+1/(ak)^2
>2k+1+2+1/(ak)^2=(2k+3)+1/(ak)^2
易知ak>0且单调递增.因而1/(ak)^2>0;
所以,(ak+1/ak)>(2k+3)^(1/2)
由1º,2º可知:an>√(2n+1)对一切正整数n成立