当前位置 :
【证明:有界数列任何收敛子列都有相同极限,则该有界数列收敛!】
更新时间: 2025-08-24 12:15:47
1人问答
问题描述:

证明:有界数列任何收敛子列都有相同极限,则该有界数列收敛!

高尚华回答:
  证明:设任意收敛子列的相同极限=a,反证法,若该有界数列不收敛于a,设该数列为{An};则有存在小量e,对于任意正整数N,存在n,n>N;使得/An-a/>e;首先,取N=1;存在n1,使得/An1-a/>e;再取N=n1,存在n2,使得/An2-a/>e;...
数学推荐
最新更新
热门数学
保卡通(baokatong.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
Copyright©2009-2021 保卡通 baokatong.com 版权所有