当前位置 :
涉及到使用零点定理的一道高数证明题,设f(x)在[a,b]上连续,f(a)=f(b),证明,存在Xo属于(a,b),使得f(Xo)=f(Xo+(b-a)/2)
更新时间: 2025-08-30 05:17:35
1人问答
问题描述:

涉及到使用零点定理的一道高数证明题,

设f(x)在[a,b]上连续,f(a)=f(b),证明,存在Xo属于(a,b),使得f(Xo)=f(Xo+(b-a)/2)

孙善忠回答:
  设F(x)=f(x)-f(x+(b-a)/2),x属于[a,(a+b)/2]那么F(a)+F((a+b)/2)=f(a)-f((a+b)/2)+f((a+b)/2)-f(b)=f(a)-f(b)=0所以F(a)=F((a+b)/2)=0or一正一负1、F(a)=F((a+b)/2)=0那么取x0=(a+b)/2,显然有f(...
最新更新
优秀数学推荐
保卡通(baokatong.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
Copyright©2009-2021 保卡通 baokatong.com 版权所有