当前位置 :
【若不等式1/(n+1)+1/(n+2)+1/(n+3)+…+1/(3n+1)>a/12对一切正自然数n都成立,求自然数a的最大值,并用数学归纳法证明你的结论.后面证明可以不用写了……】
更新时间: 2025-08-28 14:14:16
1人问答
问题描述:

若不等式1/(n+1)+1/(n+2)+1/(n+3)+…+1/(3n+1)>a/12对一切正自然数n都成立,求自然数a的最大值,并用数学归纳法证明你的结论.

后面证明可以不用写了……

何全明回答:
  a=12.若n=k,上式=1/(k+1)+1/(k+2)+…+1/(3k+1)*;当n=k+1,上式=1/(k+2)+…1/(3k+4)**;**式-*式=1/(3k+4)+1/(3k+3)+1/(3k+2)-1/(k+1)=1/(3k+2)(3k+3)-1/(3k+4(3k+3)>0[(3k+2)(3k+3)
数学推荐
最新更新
优秀数学推荐
保卡通(baokatong.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
Copyright©2009-2021 保卡通 baokatong.com 版权所有