当前位置 :
设函数f(x)=-x^3+3x+2分别在X1、X2处取得极小值、极大值.xoy平面上点A、B的坐标分别为A(X1,f(X1)、B(X2,f(X2)),该平面上动点P满足向量PA*向量PB=4,点Q是点P关于直线y=2(X-4)的对称点.求:(1)点A、
更新时间: 2025-08-29 05:10:09
1人问答
问题描述:

设函数f(x)=-x^3+3x+2分别在X1、X2处取得极小值、极大值.xoy平面上点A、B的坐标分别为A(X1,f(X1)、B(X2,f(X2)),该平面上动点P满足向量PA*向量PB=4,点Q是点P关于直线y=2(X-4)的对称点.求:

(1)点A、B的坐标.(2)动点Q的轨迹方程

宋书中回答:
  求导=0解出AB坐标   设Q(x0,y0)求出Q关于直线y=2(X-4)的对称点   即为P,由向量PA*向量PB=4解出x0与y0之间的关系即为动点Q的轨迹方程   定义域自己看看
最新更新
保卡通(baokatong.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
Copyright©2009-2021 保卡通 baokatong.com 版权所有