证明:先证明CD是⊙O的切线.
连接OD,
∵OC∥AD,
∴∠1=∠ADO,∠2=∠DAO,
∵OA=OD,
∴∠ADO=∠DAO,
∴∠1=∠2,
∵OD=OB,OC=OC,
∴△ODC≌△OBC,
∴∠ODC=∠OBC.
∵OB是⊙O的半径,BC是⊙O的切线,
∴BC⊥OB.
∴∠OBC=90°,
∴∠ODC=90°,
∴CD⊥OD.
∴CD是⊙O的切线.
再证点P平分线段DE.
过A作⊙O的切线AF,交CD的延长线于点F,则FA⊥AB.
∵DE⊥AB,CB⊥AB,
∴FA∥DE∥CB,
∴FDFC=AEAB