当前位置 :
定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a、b∈R,有f(a+b)=f(a)f(b),(1)求证:f(0)=1;(2)求证:对任意的x∈R,恒有f(x)>0;(3)已知f(x)是R
更新时间: 2025-08-23 14:01:17
1人问答
问题描述:

定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a、b∈R,有f(a+b)=f(a)f(b),

(1)求证:f(0)=1;

(2)求证:对任意的x∈R,恒有f(x)>0;

(3)已知f(x)是R上的增函数,若f(x)•f(2x-x2)>1,求x的取值范围.

梁景怡回答:
  (1)令a=b=0,则f(0)=[f(0)]2∵f(0)≠0∴f(0)=1(2)令a=x,b=-x,则 f(0)=f(x)f(-x)∴f(-x)=1f(x)由已知x>0时,f(x)>1>0,当x<0时,-x>0,f(-x)>0∴f(x)=1f(-x)>0又x=0时,f(0...
最新更新
保卡通(baokatong.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
Copyright©2009-2021 保卡通 baokatong.com 版权所有