当前位置 :
1×1²+2×2²+3×3²+……+n×n²的通项公式是什么
更新时间: 2025-09-01 13:41:09
3人问答
问题描述:

1×1²+2×2²+3×3²+……+n×n²的通项公式是什么

董延回答:
董延回答:
  通项公式求和。
董延回答:
  先推导1^2+2^2+3^2+……+n^2=n(n+1)(2n+1)/6由n^3-(n-1)^3=1*[n^2+(n-1)^2+n(n-1)]=n^2+(n-1)^2+n^2-n=2*n^2+(n-1)^2-n得2^3-1^3=2*2^2+1^2-23^3-2^3=2*3^2+2^2-34^3-3^3=2*4^2+3^2-4......n^3-(n-1)^3=2*n^2+(n-1)^2-n各等式全相加n^3-1^3=2*(2^2+3^2+...+n^2)+[1^2+2^2+...+(n-1)^2]-(2+3+4+...+n)=2*(1^2+2^2+3^2+...+n^2)-2+[1^2+2^2+...+(n-1)^2+n^2]-n^2-(2+3+4+...+n)=3*(1^2+2^2+3^2+...+n^2)-2-n^2-(1+2+3+...+n)+1=3(1^2+2^2+...+n^2)-1-n^2-n(n+1)/2整理3(1^2+2^2+...+n^2)=n^3+n^2+n(n+1)/2=(n/2)(2n^2+2n+n+1)=(n/2)(n+1)(2n+1)所以1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6再推导1^3+2^3+3^3+……+n^3=[n(n+1)/2]^2由(n+1)^4-n^4=[(n+1)^2+n^2][(n+1)^2-n^2]=(2n^2+2n+1)(2n+1)=4n^3+6n^2+4n+1得2^4-1^4=4*1^3+6*1^2+4*1+13^4-2^4=4*2^3+6*2^2+4*2+14^4-3^4=4*3^3+6*3^2+4*3+1......(n+1)^4-n^4=4*n^3+6*n^2+4*n+1各式相加有(n+1)^4-1=4*(1^3+2^3+3^3...+n^3)+6*(1^2+2^2+...+n^2)+4*(1+2+3+...+n)+n整理后4*(1^3+2^3+3^3+...+n^3)=(n+1)^4-1+6*[n(n+1)(2n+1)/6]+4*[(1+n)n/2]+n=[n(n+1)]^2进而1^3+2^3+...+n^3=[n(n+1)/2]^2
最新更新
保卡通(baokatong.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
Copyright©2009-2021 保卡通 baokatong.com 版权所有