当前位置 :
【已知正项数列an的首项为1,且对任意n属于N,1/a1a2+1/a2a3+…1/anan+1=n/a1an+1,前10项和为55.求an的通项公式,并证明.设bn=1/anan+2,求bn前n项和Sn】
更新时间: 2025-08-26 17:09:40
1人问答
问题描述:

已知正项数列an的首项为1,且对任意n属于N,1/a1a2+1/a2a3+…1/anan+1=n/a1an+1,前10项和为55.

求an的通项公式,并证明.设bn=1/anan+2,求bn前n项和Sn

单世民回答:
  把1/a1a2+1/a2a3+…1/anan+1=n/a1an+1作为第一个式子,再将式中的n替换成n-1得到第二个式子1/a1a2+1/a2a3+…1/an-1an=n-/a1an将两个式子相减左边减左边右边减右边化简可得到n*an-an+1(n-1)=1将该式子...
最新更新
热门数学
保卡通(baokatong.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
Copyright©2009-2021 保卡通 baokatong.com 版权所有