当前位置 :
p为椭圆C:y^2/a^2+x^2/b^2=1(a>b>0)上一点,A、B为圆O:x^2+y^2=b^2上的两个不同的点,直线AB分别交x轴y轴于M、N两点且向量PA*OA=O,向量PB*OB=O,O为坐标原点.1)若椭圆的准线为+-25/3,并且a^2/|OM|^2+b^2/|ON|^2=25
更新时间: 2025-08-18 13:13:20
1人问答
问题描述:

p为椭圆C:y^2/a^2+x^2/b^2=1(a>b>0)上一点,A、B为圆O:x^2+y^2=b^2上的两个不同的点,

直线AB分别交x轴y轴于M、N两点且向量PA*OA=O,向量PB*OB=O,O为坐标原点.1)若椭圆的准线为+-25/3,并且a^2/|OM|^2+b^2/|ON|^2=25/16,求椭圆C的方程.2)椭圆C上是否存在满足向量PA*PB=0的点?若存在,求出存在时a、b满足的条件,若不存在,请说明理由.

潘超回答:
  (1)由准线公式:x=±(a^2/c)可求出a=5,c=3,所以b=4,所以椭圆方程为:y^2/25+x^2/16=1(2)设存在P(x0,y0)满足条件,则当且仅当OBPA为正方形时成立(向量相乘为0,表示两个向量互相垂直)所以ABS(OP)=SQR(2)...
最新更新
保卡通(baokatong.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
Copyright©2009-2021 保卡通 baokatong.com 版权所有