当前位置 :
【用拉格朗日乘数法遇到的问题求u=f(x,y,z)在φ(x,y,z)=0下的极值点,把用拉格朗日乘数法算出的极值点代到u=f(x,y,z(x,y))=g(x,y)的两个偏导数处,结果却不一定为零,怎么回事?比如u=x^2+y^2+z^2,φ(x】
更新时间: 2025-08-18 08:47:01
1人问答
问题描述:

用拉格朗日乘数法遇到的问题

求u=f(x,y,z)在φ(x,y,z)=0下的极值点,把用拉格朗日乘数法算出的极值点代到u=f(x,y,z(x,y))=g(x,y)的两个偏导数处,结果却不一定为零,怎么回事?

比如u=x^2+y^2+z^2,φ(x,y,z)=(x-y)^2-z^2-1=0

陈群阳回答:
  对于你这个具体问题,当你代入约束把u=f(x,y,z(x,y))=g(x,y)时,在你代入z^2=(x-y)^2-1时,有一个边界条件(x-y)^2>=1(也即g(x,y)的定义域),g(x,y)的最值不仅会出现在一些驻点上,也会出现在边界上,而在边界上出现的最值...
最新更新
热门数学
保卡通(baokatong.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
Copyright©2009-2021 保卡通 baokatong.com 版权所有