当前位置 :
【新年晚会,是我们最欢乐的时候.会场上,悬挂着五彩缤纷的小装饰,其中有各种各样的立体图形.(1)数一下每一个多面体具有的顶点数(V)、棱数(E)和面数(F),并且把结果记入表】
更新时间: 2025-08-28 06:34:42
1人问答
问题描述:

新年晚会,是我们最欢乐的时候.会场上,悬挂着五彩缤纷的小装饰,其中有各种各样的立体图形.

(1)数一下每一个多面体具有的顶点数(V)、棱数(E)和面数(F),并且把结果记入表中

多面体顶点数(V)面数(F)棱数(E)
正四面体446
正方体
正八面体
正十二面体
正二十面体122030
(2)观察表中数据,猜想多面体的顶点数(V)、棱数(E)和面数(F)之间的关系.

(3)伟大的数学家欧拉(Euler 1707-1783)证明了这一令人惊叹的关系式,即欧拉公式.若已知一个多面体的顶点数V=196,棱的条数E=294.请你用欧拉公式求这个多面体的面数.

邓辉回答:
  (1)如表所示:正方体8612正八面体6812正十二面体201230(2)∵4+4-6=2,   8+6-12=2,   6+8-12=2,   20+12-30=2,   12+20-30=2,   ∴V+F-E=2;   (3)由V+F-E=2,   即:196+F-294=2,   F=294+2-196=100.   这是一个100面体.
最新更新
保卡通(baokatong.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
Copyright©2009-2021 保卡通 baokatong.com 版权所有