当前位置 :
【已知:a,b,c为互不相等的三个数,且a/b-c+b/c-a+c/a-b=0,求证:a/(b-c)^2+b/(c-a)^2+c/(a-b)^2=0】
更新时间: 2025-08-18 08:49:53
1人问答
问题描述:

已知:a,b,c为互不相等的三个数,且a/b-c+b/c-a+c/a-b=0,求证:a/(b-c)^2+b/(c-a)^2+c/(a-b)^2=0

祁卫回答:
  由a/(b-c)+b/(c-a)+c/(a-b)=0得   [a/(b-c)+b/(c-a)+c/(a-b)][(1/(b-c)+1/(c-a)+1/(a-b)]=0   拆开得[a/(b-c)2+b/(c-a)2+c/(a-b)2]+(a+b)/[(b-c)(c-a)]+(b+c)/[(c-a)(a-b)]+(c+a)/[(a-b)(b-c)]=0   即[a/(b-c)2+b/(c-a)2+c/(a-b)2]+(a2-b2+b2-c2+c2-a2)/[(a-b)(b-c)(c-a)]=0(后半部分通分)   故a/(b-c)2+b/(c-a)2+c/(a-b)2=0
最新更新
保卡通(baokatong.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
Copyright©2009-2021 保卡通 baokatong.com 版权所有