当前位置 :
【梯形ABCD中,AD平行BC,AD=3,BC=9,AB=6,CD=4,E、F分别是腰AB、DC上的点,且EF平行BC,梯形AEFD与EBCF的周长相等,则EF的长为?】
更新时间: 2025-08-21 16:21:51
1人问答
问题描述:

梯形ABCD中,AD平行BC,AD=3,BC=9,AB=6,CD=4,E、F分别是腰AB、DC上的点,且EF平行BC,

梯形AEFD与EBCF的周长相等,则EF的长为?

邓曦回答:
  梯形AEFD与EBCF的周长相等   则AD+AE+DF+EF=BC+BE+CF+FE,3+AE+DF+EF=9+(6-AE)+(4-DF)+EF   所以AE+DF=8   因为AD‖EF‖BC,所以AE/AB=DF/DC,AE/6=DF/4   所以AE=4.8,DF=3.2   EF=7.8
数学推荐
最新更新
优秀数学推荐
保卡通(baokatong.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
Copyright©2009-2021 保卡通 baokatong.com 版权所有