已知数列an的通项为an,前n项和为Sn,且an是Sn与2的等差中项;数列bn中,b1=1,点P(bn,bn+1)在直线x-y+2=0上. (1)求数列an,bn;(2)设bn的前n项和为Bn,试比较1/B1+1/B2+1/B3+...+1/Bn与2的大小;(3)设Tn=b1/a1+b2/a2+b3/a3+...+bn/an,若对一切正整数n,Tn小于c(c属于Z)恒成立,求c的最小值.