A=2
T/2=π/2T=π
T=2π/ww=2
f(x)=2sin(2x+φ)x=π/6时有最大值2
所以2sin(π/3+φ)=2π/3+φ=π/2φ=π/6
(1)f(x)=2sin(2x+π/6)
(2)g(x)=(6cos^4x-sin^2x-1)/2sin(2x+π/2)
=(6cos^4x-sin^2x-1)/2cos2x
=(6(1+cos2x)^2/4-(1-cos2x)/2-1)/cos2x
=(3/2+3cos2x+3/2(cos2x)^2)-1/2+cos2x/2-1)/cos2x
=3/2cos2x+5/2
最大值=3/2+5/2=4
最小值=-3/2+5/2=1
值域为【1,4】